STATISTICAL POST-PROCESSING FOR HURRICANE ENSEMBLE FORECASTING

Zoltan Toth, Roman Krzysztofowicz¹, and Tom Hamill

ESRL/OAR/NOAA

¹ Univeristy of Virginia

Acknowledgements:

Paul Schultz, Huiling Yuan, Isidora Jankov, Brad Beechler, Yuejian Zhu, Andre Methot, Kathy Gilbert et al.

OUTLINE / SUMMARY

User requirements

- Joint probabilities / co-variances use ensembles
- Perfect reliability & highest possible resolution

Current NWP systems

- Capabilities
 - Forecast skill out to ~20 days
- Limitations
 - Lead-time dependent biases in mean, spread, etc
 - Coarse resolution, limited set of variables
 - Time consuming execution need to fuse with info form latest observations

Statistical post-processing

- Positional and amplitude corrections
 - Use generic methods when possible
 - Expand to enhance TC-specific performance

WHY DO WE NEED PROBABILISTIC FORECASTS?

An example - House in hurricane prone area

- Weather situation Heightened threat of hit by a TC
 - Climatological probability of hit by major hurricane on any day in season
 - 0.01%
 - Forecast probability of hit at 7 day lead
 - 10% (1000 times above climatological chance)
- User situation Owner set to leave on cruise next day
 - Cancel trip at loss of \$1k so if needed, can protect house
 - Protect house at cost of \$3k then leave
 - Go on trip without protecting house and risk potential damage up to 100k

WHY DO WE NEED PROBABILISTIC FORECASTS? 2

Another example - Air travel (after Ken Mylne)

- Air travel safety situation
 - "Climatological" chance of aircraft crash
 - 0.00025%
 - Pilot says on today's flight, chance of crash due to hurricane caused storms
 - 0.25% (1000 times climatological chance)
- User situation Passenger must reach destination today
 - Take small chance of an accident Most likely (99.75%) gets there but risks losing life
 - Cancel trip and hence miss very important appointment to avoid accident for sure

Moral

- Humans make everyday decisions in uncertain situations all the time
 - We are capable of and have strong need for assessing and using information with uncertainty (evolution)

TRADITIONAL WAY OF GENERATING PROBABILISTIC FORECASTS

- Based on single NWP forecast
 - Statistical analysis of errors in forecast
 - E.g., single variable probabilistic forecasts from MOS PoP, etc

WHY DO WE NEED ENSEMBLE FORECASTS?

- Atmosphere is nonlinear system
 - Error evolution can be highly non-linear
 - Probabilistic forecast based on single integration can have serious limitations
- Users often affected by numerous weather variables
 - Need to know co-variance across time, space, variables
 - E.g., probability of wind above X, temp below T, and precip above P
 - Traditional statistical methods cannot practically deliver such info
- Real life user situations can be complicated & highly nonlinear
 - Users have myriad factors to consider beside weather
 - Decision making via study of hypothetical scenarios is imperative, e.g.
 - Utility company designs optimal strategy before hurricane hits
 - Must have model of operations, incorporating effect of weather
 - "Downstream" applications
 - E.g., Flood forecasting via hydrologic ensemble forced by atmospheric ensemble

AVIATION EXAMPLE

- Recovery of a carrier from weather related disruptions
 - Operational decisions depend on multitude of factors
 - Based on United / Hemispheres March 2009 article, p. 11-12
- Factors affecting operations
 - Weather multiple parameters
 - Over large region / CONUS during coming few days
 - Federal regulations / aircraft limitations
 - Dispatchers / load planners
 - Aircraft availability
 - Scheduling / flight planning
 - Maintenance
 - Pre-location of spare parts & other assets where needed
 - Reservations
 - Rebooking of passengers
 - Customer service
 - Compensation of severely affected customers
- How to design economically most viable operations?
 - Given goals / requirements / metrics / constraints

SELECTION OF OPTIMAL USER PROCEDURES

- Generate ensemble weather scenarios e_i, i = 1, n
- Assume weather is e_i, define optimal operation procedures o_i
- Assess cost/loss c_{ii} using o_i over all weather scenarios e_i
- Select o_i with minimum expected (mean) cost/loss c_i over e₁,...e_n as optimum operation

COST/LOSS c _{ij} GIVEN e _j WEATHER & o _i OPERATIONS			ENSEMBLE SCENARIOS				CTED ST
			e ₁	e_2	•	e_n	EXPE CO
	PERALION OCEDURES	0 ₁	C ₁₁	C ₁₂	•	C _n	<u>c</u> 1
Z		02	C ₂₁	C ₂₂	•	C _{2n}	<u>c</u> 2
ii (•		•	•	•	
	PR	O _n	C _{n1}	C _{n2}	•	C _{nn}	<u>c</u> _n

USER REQUIREMENTS FOR FORMAT

- Ensemble of forecasts for
 - Complex decision making situations
 - "Downstream" applications

- Probabilistic forecasts
 - For simpler applications
 - Can be derived from / must be consistent with ensembles

Consider ensemble as basic format from which all other forecast info can be derived

USER REQUIREMENTS FOR QUALITY

- Statistical resolution ("predictive skill")
 - Seek highest possible skill in ensemble of forecasts
 - Need to extract and fuse all predictive information
 - Ensembles, high resolution unperturbed forecasts, observations, etc
 - Smallest possible spread that allows reliability
- Statistical reliability
 - Need to make ensemble members statistically indistinguishable from reality
 - Correct systematic errors (first moment correction)
 - Assess error statistics (higher moment corrections)
 - Use climatology as background information

REALITY?

- Any forecast (single or ensemble member)
 - Has lead-time dependent systematic errors, e.g.,
 - Central pressure
 - Wind speed
 - Precipitation
- Collection of forecasts (ensembles by opportunity or design)
 - Spread and higher moments have lead-time dependent systematic errors
- Observations taken after NWP initial time
 - May offer valuable additional forecast information
 - E.g., "Interpolated" forecast storm positions
- NWP forecast variables different from user relevant variables
 - Information needed
 - At finer resolution
 - For additional variable

Need for statistical post-processing

STATISTICAL POST-PROCESSING

Problem

- Relate coarse resolution biased forecasts to user relevant fine resolution information
- Tasks broken up to facilitate collaboration / transition to operations
 - Bias correct coarse resolution ensemble grid wrt NWP analysis
 - Cheap
 - Sample of forecasts / hind-casts needed
 - Merge various guidance
 - Fuse all predictive info into "unified ensemble"
 - Create observationally based fine resolution analysis
 - Estimate of truth
 - Downscale bias-corrected ensemble forecast
 - Relate coarse resolution NWP and fine resolution observationally based analyses
 - Perfect prog approach No need for hind-casts
 - Derive additional variables AIVs
 - Based on bias corrected & downscaled ensemble

Outcome

 Skillful and statistically reliable ensemble of hurricane impact variables on fine grid

PRACTICAL APPROACHES

- Can general stat. post-processing be used for TC forecasting?
 - Consider TC specific extensions only when needed
 - Use tools that can serve multiple applications if possible
- Consider NAEFS system as baseline
 - Current state
 - NCEP, Canadian plus FNMOC ensembles & hires forecasts
 - Wind speed, etc on 5 (2.5) km NDFD grid
 - Next phase Bayesian Processor
 - "Homogenization" bias removal
 - Fusing Combine info from ensemble/hires fcsts, obs, climate into posterior cdf
 - Adjust ensemble members to be consistent with posterior cdf
 - Downscale to fine resolution grid / Derive user relevant variables
- NUOPC interagency ensemble development linked with HFIP
 - TC specific enhancements
 - International link to GIFS-TIGGE community
 - Contributions to / benefits from GIFS development

TC SPECIFIC ENHANCEMENTS

- How to address systematic positional errors?
 - Generalize concept of "track errors"
 - Define positional error for entire grid (not only TC)
 - Link with verification WG
- Decompose errors into positional and amplitude components
 - Test use of "Field adjustment" approach of S. Ravela
 - Assess random and systematic errors for both components
 - Correct systematic positional error before Bayesian amplitude corrections
 - Include positional error correction for second & higher moments
 - I.e., adjust forecast spread for tracks

TC SPECIFIC ENHANCEMENTS - 2

- How to improve intensity forecasts?
 - Consider regime dependent processing
 - Natural extension of Bayesian framework
 - Consider testing use of additional predictors
- Issue of sample size required for statistical postprocessing
 - TC specific and regime dependent processing may require large sample
 - Analysis of cost of hind-cast generation vs. benefit from larger sample

TC SPECIFIC ENHANCEMENTS

- How to address systematic positional errors?
 - Generalize concept of "track errors"
 - Define positional error for entire grid (not only TC)
 - Link with verification WG
- Decompose errors into positional and amplitude components
 - Test use of "Field adjustment" approach of S. Ravela
 - Assess random and systematic errors for both components
 - Correct systematic positional error before Bayesian amplitude corrections
 - Include positional error correction for second & higher moments
 - I.e., adjust forecast spread for tracks
- How to improve intensity forecasts?
 - Consider regime dependent processing
 - Natural extension of Bayesian framework
 - Consider testing use of additional predictors
- Issue of sample size required for statistical post-processing
 - TC specific and regime dependent processing may require large sample
 - · Analysis of cost of hind-cast generation vs. benefit from larger sample

OUTLINE / SUMMARY

User requirements

- Joint probabilities / co-variances use ensembles
- Perfect reliability & highest possible resolution

Current NWP systems

- Capabilities
 - Forecast skill out to ~20 days
- Limitations
 - Lead-time dependent biases in mean, spread, etc
 - Coarse resolution, limited set of variables
 - Time consuming execution need to fuse with info form latest observations

Statistical post-processing

- Positional and amplitude corrections
 - Use generic methods when possible
 - Expand to enhance TC-specific performance

BACKGROUND

4-D DATACUBE

Ensemble data depository / access

- Create NOAA digital forecast database
 - Summary statistics from ensemble
 - E.g., 10/50/90 percentile forecasts Pase 1
 - All ensemble members
 - E.g., 20-100 members Phase 2
- Provide easy access to internal / external users
 - NOMADS, etc?
 - Link with multi-center ensembles
 - NAEFS NUOPC GIFS

Database interrogation / forecaster tools

- Modify summary statistics
- Back-propagate modified information into ensemble
- Derive any information from summary statistics / ensembles

00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%

CONTINUOUS RANKED PROBABILITY SCORE RAW / BIAS CORR. & DOWNSCALED & HIRES MERGED / NAEFS

NAEFS NDGD Probabilistic 2m Temperature Forecast Verification For 2007090100 — 2007093000

NUMERICAL WEATHER PREDICTION (NWP) BASICS

COMPONENTS OF NWP

- Create initial condition reflecting state of the atmosphere, land, ocean
- Create numerical model of atmosphere, land, ocean

ANALYSIS OF ERRORS

- Errors present in both initial conditions and numerical models
- Coupled atmosphere / land / ocean dynamical system is chaotic
 - Any error amplifies exponentially until nonlinearly saturated
 - Error behavior is complex & depends on
 - Nature of instabilities
 - Nonlinear saturation

IMPACT ON USERS

- Analysis / forecast errors negatively impact users
 - Impact is user specific (user cost / loss situation)
- Information on expected forecast errors needed for rational decision making
 - Spatial/temporal/cross-variable error covariance needed for many real life applications
 - How can we provide information on expected forecast errors?

HOW CAN WE REDUCE & ESTIMATE EXPECTED FORECAST ERRORS?

STATISTICAL APPROACH

- Statistically assess errors in past unperturbed forecasts (eg, RUC)
 - Can correct for systematic errors in expected value
 - Can create probabilistic forecast information Eg, MOS PoP
- Limitation
 - Case dependent variations in skill not captured
 - Error covariance information practically not attainable

DYNAMICAL APPROACH – Ensemble forecasting

- Sample initial & model error space Monte Carlo approach
 - Leverage DTC Ensemble Testbed (DET) efforts
- Prepare multiple analyses / forecasts
 - Case dependent error estimates
 - Error covariance estimates
- Limitation
 - Ensemble formation imperfect not all initial / model errors represented

DYNAMICAL-STATISTICAL APPROACH

- Statistically post-process ensemble forecasts
 - Good of both worlds
 - How can we do that?